Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 17(3): e0266173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35353851

RESUMO

Respiratory failure complicates most critically ill patients with COVID-19 and is characterized by heterogeneous pulmonary parenchymal involvement, profound hypoxemia and pulmonary vascular injury. The high incidence of COVID-19 related respiratory failure has exposed critical shortages in the supply of mechanical ventilators, and providers with the necessary skills to treat. Traditional mass-produced ventilators rely on an internal compressor and mixer to moderate and control the gas mixture delivered to a patient. However, the current emergency has energized the pursuit of alternative designs, enabling greater flexibility in supply chain, manufacturing, storage, and maintenance considerations. To achieve this, we hypothesized that using the medical gasses and flow interruption strategy would allow for a high performance, low cost, functional ventilator. A low-cost ventilator designed and built-in accordance with the Emergency Use guidance from the US Food and Drug Administration (FDA) is presented wherein pressurized medical grade gases enter the ventilator and time limited flow interruption determines the ventilator rate and tidal volume. This simple strategy obviates the need for many components needed in traditional ventilators, thereby dramatically shortening the time from storage to clinical deployment, increasing reliability, while still providing life-saving ventilatory support. The overall design philosophy and its applicability in this new crisis is described, followed by both bench top and animal testing results used to confirm the precision, safety and reliability of this low cost and novel approach to mechanical ventilation. The ventilator meets and exceeds the critical requirements included in the FDA emergency use guidelines. The ventilator has received emergency use authorization from the FDA.


Assuntos
COVID-19 , Insuficiência Respiratória , Animais , COVID-19/terapia , Humanos , Reprodutibilidade dos Testes , Insuficiência Respiratória/terapia , Ventiladores Mecânicos
2.
Artigo em Inglês | MEDLINE | ID: mdl-34197320

RESUMO

Acoustic links for implantable medical devices (implants) have gained attention primarily because they provide a route to wireless deep-tissue systems. The miniaturization of the implants is a key research goal in these efforts, nominally because smaller implants result in less acute tissue damage. Implant size in most acoustic systems is limited by the piezoelectric bulk crystal used for power harvesting and data communication. Further miniaturization of the piezocrystal can degrade system power transfer efficiency and data transfer reliability. Here, we present a new method for packaging the implant piezocrystal; the method maximizes power transfer efficiency ( η ) from the acoustic power at the piezo surface to the power delivered to the electrical load and information transfer across the acoustic link. Our method relies on placing piezo-to-substrate anchors to the piezo regions where the vibrational displacement of the mode of interest is zero. To evaluate our method, we investigated packaged 1×1×1 mm3 piezocrystals assembled with different sized anchors. Our results show that reducing the anchor size decreases anchor loss and thus improves piezo quality factor (Q). We also demonstrate that this method improves system electromechanical coupling. A strongly coupled, high-Q piezo with properly sized and located anchors is demonstrated to achieve significantly higher η and superior data transfer capability at resonance. Overall, this work provides an analysis and generic method for packaging the implant piezocrystal that enables the design of efficient acoustic power and data links, which provides a path toward the further miniaturization of ultrasonic implants to submillimeter scales.


Assuntos
Fontes de Energia Elétrica , Ultrassom , Desenho de Equipamento , Próteses e Implantes , Reprodutibilidade dos Testes , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA